High-performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs

Autor: Parvez N. Uppal, B.C. Kane, N.E. Byer, Stefan P. Svensson, D.-W. Tu, David M. Gill
Rok vydání: 1996
Předmět:
Zdroj: IEEE Electron Device Letters. 17:328-330
ISSN: 1558-0563
0741-3106
DOI: 10.1109/55.506357
Popis: This letter describes the material characterization and device test of InAlAs/InGaAs high electron mobility transistors (HEMTs) grown on GaAs substrates with indium compositions and performance comparable to InP-based devices. This technology demonstrates the potential for lowered production cost of very high performance devices. The transistors were fabricated from material with room temperature channel electron mobilities and carrier concentrations of /spl mu/=10000 cm/sup 2//Vs, n=3.2/spl times/10/sup 12/ cm/sup -2/ (In=53%) and /spl mu/=11800 cm/sup 2//Vs, n=2.8/spl times/10/sup 12/ cm/sup -2/ (In=60%). A series of In=53%, 0.1/spl times/100 /spl mu/m/sup 2/ and 0.1/spl times/50 /spl mu/m/sup 2/ devices demonstrated extrinsic transconductance values greater than 1 S/mm with the best device reaching 1.074 S/mm. High-frequency testing of 0.1/spl times/50 /spl mu/m/sup 2/ discrete HEMT's up to 40 GHz and fitting of a small signal equivalent circuit yielded an intrinsic transconductance (g/sub m,i/) of 1.67 S/mm, with unity current gain frequency (f/sub T/) of 150 GHz and a maximum frequency of oscillation (f/sub max/) of 330 GHz. Transistors with In=60% exhibited an extrinsic g/sub m/ of 1.7 S/mm, which is the highest reported value for a GaAs based device.
Databáze: OpenAIRE