Construction of a normalized basis of a univariate quadratic $C^1$ spline space and application to the quasi-interpolation
Autor: | A. Rahouti, Abdelhafid Serghini, A. Tijini |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática. 40:1-21 |
ISSN: | 2175-1188 0037-8712 |
DOI: | 10.5269/bspm.43267 |
Popis: | In this paper, we use the finite element method to construct a new normalized basis of a univariate quadratic $C^1$ spline space. We give a new representation of Hermite interpolant of any piecewise polynomial of class at least $C^1$ in terms of its polar form. We use this representation for constructing several superconvergent and super-superconvergent discrete quasi-interpolants which have an optimal approximation order. This approach is simple and provides an interesting approximation. Numerical results are given to illustrate the theoretical ones. |
Databáze: | OpenAIRE |
Externí odkaz: |