On a Fractional Differential Inclusion in Banach Space Under Weak Compactness Condition

Autor: F. Z. Mostefai, C. Castaing, L. X. Truong, C. Godet-Thobie
Rok vydání: 2016
Předmět:
Zdroj: Advances in Mathematical Economics Volume 20 ISBN: 9789811004759
DOI: 10.1007/978-981-10-0476-6_2
Popis: We consider a class of boundary value problem in a separable Banach space governed by a fractional differential inclusion with integral boundary conditions $$\displaystyle{\left \{\begin{array}{lll} w\text{-}D^{\alpha }u(t) \in F(t,u(t),w\text{-}D^{\alpha -1}u(t)), t \in [0,1] \\ I^{\beta }u(t)\vert _{t=0} = 0, u(1) =\int _{ 0}^{1}u(t)dt\end{array} \right.}$$ where α ∈ ]1, 2], \(\beta \in ]0,\infty [\) are given constant and w-D γ is the fractional w-R.L derivative of order γ ∈ {α − 1, α}, F is a convex weakly compact valued mapping. Topological properties of the solutions set are presented. Applications to control problems and further variants are provided.
Databáze: OpenAIRE