A numerical reconstruction method in inverse elastic scattering
Autor: | Fermín S. V. Bazán, V. Sevroglou, Juliano B. Francisco, G. Pelekanos, Koung Hee Leem |
---|---|
Rok vydání: | 2017 |
Předmět: |
Iterative method
Applied Mathematics Numerical analysis Mathematical analysis General Engineering Boundary (topology) Inverse 010103 numerical & computational mathematics Rigid body 01 natural sciences Regularization (mathematics) Computer Science Applications 010101 applied mathematics Tikhonov regularization Boundary value problem 0101 mathematics Mathematics |
Zdroj: | Inverse Problems in Science and Engineering. 25:1577-1600 |
ISSN: | 1741-5985 1741-5977 |
DOI: | 10.1080/17415977.2016.1273919 |
Popis: | In this paper a new numerical method for the shape reconstruction of obstacles in elastic scattering is proposed. Initially, the direct scattering problem for a rigid body and the mathematical setting for the corresponding inverse one are presented. Inverse uniqueness issues for the general case of mixed boundary conditions on the boundary of our obstacle, which are valid for a rigid body as well are established. The inversion algorithm based on the factorization method is presented into a suitable form and a new numerical scheme for the reconstruction of the shape of the scatterer, using far-field measurements, is given. In particular, an efficient Tikhonov parameter choice technique, called Improved Maximum Product Criterion (IMPC) and its linchpin within the framework of the factorization method is exploited. Our regularization parameter is computed via a fast iterative algorithm which requires no a priori knowledge of the noise level in the far-field data. Finally, the effectiveness of IMPC is... |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |