Autor: |
Young-Hyun Lee, Kyung-Seung Yang, Yong Gi Baik, Jong-Soo Kim, Seok Han Yoon, Byungha Lee, In Su Koo, Dae-Hwan Kwak, Yun Sik Jin, Young Bae Kim, Chuhyun Cho, Sanghyuk An, Seong-Ho Kim |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Journal of Magnetics. 20:394-399 |
ISSN: |
1226-1750 |
DOI: |
10.4283/jmag.2015.20.4.394 |
Popis: |
Electromagnetic Induction Launchers (EIL) have been receiving great attention due to their advantages of noncontact between the coils and a projectile. This paper describes the modeling and design of 3-stage EIL to accelerate a copper projectile of 50 kg with 290 mm diameter. Our EIL consists of three independent driving coils and pulsed power modules to generate separate driving currents. To find efficient acceleration conditions, the appropriate shape of the driving coils and the position of the projectile have been calculated by using a finite element analysis (FEA) method. The results showed that the projectile can be accelerated more effectively as the gap between the coils is smaller; a final velocity of 45 m/s was obtained. The acceleration efficiency was estimated to be 23.4% when a total electrical energy of 216 kJ was discharged. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|