RANKL Mediates Muscle Atrophy and Dysfunction in a Cigarette Smoke–induced Model of Chronic Obstructive Pulmonary Disease

Autor: Yuhan Hu, Yanqing Le, Yongchang Sun, Jing Xiong, Yafei Rao, Suliang Guo, Lu Zhou
Rok vydání: 2021
Předmět:
Zdroj: American Journal of Respiratory Cell and Molecular Biology. 64:617-628
ISSN: 1535-4989
1044-1549
DOI: 10.1165/rcmb.2020-0449oc
Popis: Skeletal muscle dysfunction is one of the important comorbidities of chronic obstructive pulmonary disease (COPD); however, the underlying mechanisms remain largely unknown. RANKL (receptor activator of nuclear factor κB ligand), a key mediator in osteoclast differentiation, was also found to play a role in skeletal muscle pathogenesis. Whether RANKL is involved in COPD-related skeletal muscle dysfunction is as-of-yet unknown. We examined the expression of RANKL/RANK in skeletal muscles from mice exposed to cigarette smoke (CS) for 24 weeks. Grip strength and exercise capacity as well as muscular morphology were evaluated in CS-exposed mice with or without anti-RANKL treatment. The expressions of protein synthesis- or muscle growth-related molecules (IGF-1, myogenin, and myostatin), muscle-specific ubiquitin E3 ligases (MuRF1 and atrogin-1), and the NF-κb inflammatory pathway were also evaluated in skeletal muscles. The effect of CS extract on RANKL/RANK expression and that of exogenous RANKL on the ubiquitin-proteasome pathway in C2C12 myotubes were investigated in vitro. Long-term CS exposure induced skeletal muscle dysfunction and atrophy together with upregulation of RANKL/RANK expression in a well-established mouse model of COPD. RANKL neutralization prevented skeletal muscle dysfunction and atrophy. RANKL inhibition decreased expressions of myostatin and MuRF1/Atrogin1 and suppressed the NF-κb pathway in skeletal muscles from CS-exposed mice. In in vitro experiments with C2C12 myotubes, CS extract induced expression of RANKL/RANK, and exogenous RANKL induced activation of the ubiquitin-proteasome pathway and NF-κb pathway via RANK. Our results revealed an important role of the RANKL/RANK pathway in muscle atrophy induced by CS exposure, suggesting that RANKL may be a potential therapeutic target in COPD-related skeletal muscle dysfunction.
Databáze: OpenAIRE