Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany
Autor: | Jinsuk Kang, Christian Reise, Georg Bopp, Petra Högy, Andrea Ehmann, Tabea Obergfell, Max Trommsdorff, Axel Weselek, Stephan Schindele |
---|---|
Rok vydání: | 2021 |
Předmět: |
Land use
Renewable Energy Sustainability and the Environment business.industry 020209 energy Climate change Distribution (economics) 02 engineering and technology Crop rotation Agricultural economics Agriculture 0202 electrical engineering electronic engineering information engineering Environmental science Vegetable farming Arable land business Productivity |
Zdroj: | Renewable and Sustainable Energy Reviews. 140:110694 |
ISSN: | 1364-0321 |
Popis: | Combining agriculture and photovoltaics on the same land area gains in attention and political support in a growing number of countries accompanied by notable research activities in France, USA and Korea, amongst others. This study assesses the technical feasibility of agrivoltaic (APV), while it gives insights on how to design an APV system. Furthermore, it analyses the electrical yield and the behavior and productivity of four crops grown in Germany's largest agrivoltaic research facility installed in 2016 near Lake Constance within the research project APV-RESOLA by Fraunhofer Institute for Solar Energy Systems ISE. The German design differs from most other agrivoltaic approaches by allowing for a wide range of machine employment, facilitated by a vertical clearance of 5 m and a width clearance of up to 19 m. Crops cultivated under the APV system and on the reference field under a crop rotation scheme include potato, celeriac, clover grass and winter wheat. The land use efficiency measured by the Land Equivalent Ratio (LER) indicated a rise between 56% and 70% in 2017 while the dry and hot summer in 2018 demonstrated that the agrivoltaic system could increase land productivity by nearly 90%. Radiation simulations showed that deviating from full south by around 30° resulted in equal distribution of radiation on ground level, representing the basis for the agrivoltaic design. Considering climate change and increasing land scarcity, our overall results suggest a high potential of agrivoltaics as a viable and efficient technology to address major challenges of the 21rst century. |
Databáze: | OpenAIRE |
Externí odkaz: |