Bounds of the rank of the Mordell–Weil group of Jacobians of Hyperelliptic Curves

Autor: Álvaro Lozano-Robledo, Harris B. Daniels, Erik Wallace
Rok vydání: 2020
Předmět:
Zdroj: Journal de Théorie des Nombres de Bordeaux. 32:231-258
Popis: In this article we extend work of Shanks and Washington on cyclic extensions, and elliptic curves associated to the simplest cubic fields. In particular, we give families of examples of hyperelliptic curves $C: y^2=f(x)$ defined over $\mathbb{Q}$, with $f(x)$ of degree $p$, where $p$ is a Sophie Germain prime, such that the rank of the Mordell--Weil group of the jacobian $J/\mathbb{Q}$ of $C$ is bounded by the genus of $C$ and the $2$-rank of the class group of the (cyclic) field defined by $f(x)$, and exhibit examples where this bound is sharp.
Databáze: OpenAIRE