A fast distributed algorithm for (Δ + 1)-edge-coloring
Autor: | Anton Bernshteyn |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Combinatorial Theory, Series B. 152:319-352 |
ISSN: | 0095-8956 |
DOI: | 10.1016/j.jctb.2021.10.004 |
Popis: | We present a deterministic distributed algorithm in the LOCAL model that finds a proper ( Δ + 1 ) -edge-coloring of an n-vertex graph of maximum degree Δ in poly ( Δ , log n ) rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only Δ + 1 colors (matching the bound given by Vizing's theorem). Our approach is inspired by the recent proof of the measurable version of Vizing's theorem due to Grebik and Pikhurko. |
Databáze: | OpenAIRE |
Externí odkaz: |