Geometry and kinematics of active normal faulting on Crete; implications for Hellenic subduction slab retreat

Autor: Andy Nicol, Vasiliki Mouslopoulou, John Begg, Vasso Saltogianni, Onno Oncken
Rok vydání: 2023
Popis: The eastern Mediterranean island of Crete is located on the overriding plate of the Hellenic subduction thrust which is curved and changes strike from ~170° to ~50° in a west to east direction. Crete is located in the zone of maximum curvature of the subduction thrust. Basin and range topography together with prominent limestone scarps indicate that Quaternary deformation at the ground surface on Crete is dominated by normal faults with slip rates of up to ~1 mm/yr. These active faults comprise two primary sets that strike N-NNE (0-30°) and E-ESE (90-120°), with the more easterly faults dominating in southern Crete. Each fault set is characterised by dip slip and together they accommodate coeval W-WNW and N-NNE crustal extension. The E-ESE normal faults are approximately parallel to the strike of the subducting North African plate and form part of a regional fault system that swings in strike in sympathy with depth contours on the top of the concave northwards plate. By contrast, N-NNE normal faults are sub-parallel to the line of maximum curvature on the subduction thrust. These geometric relationships support the view that normal faulting on Crete formed, at least partly, in response to Cenozoic slab retreat (e.g., Jolivet et al., 2013), which continued into the Quaternary. In this model contemporaneous multi-directional crustal extension on Crete is driven by geologically simultaneous westward and southward retreat of the slab. Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., et al. (2013). Aegean tectonics: Strain localisation, slab tearing and trenchretreat. Tectonophysics, 597–598, 1–33. https://doi.org/10.1016/j.tecto.2012.06.
Databáze: OpenAIRE