Selection of informative hyperspectral band subsets based on entropy and correlation
Autor: | A. Lorencs, J. Sinica-Sinavskis, I. Mednieks |
---|---|
Rok vydání: | 2018 |
Předmět: |
Computer science
business.industry 0211 other engineering and technologies Hyperspectral imaging Pattern recognition 02 engineering and technology Spectral bands Correlation Statistics::Machine Learning Computer Science::Computer Vision and Pattern Recognition 0202 electrical engineering electronic engineering information engineering General Earth and Planetary Sciences Entropy (information theory) 020201 artificial intelligence & image processing Artificial intelligence business 021101 geological & geomatics engineering |
Zdroj: | International Journal of Remote Sensing. 39:6931-6948 |
ISSN: | 1366-5901 0143-1161 |
DOI: | 10.1080/01431161.2018.1468107 |
Popis: | The article proposes two novel and relatively simple unsupervised procedures for the selection of informative small subsets of spectral bands in hyperspectral images. To ensure the informat... |
Databáze: | OpenAIRE |
Externí odkaz: |