Autor: |
Zhi-An Lin, Jen-Wei Pan, Feng-Ming Tsai, Jeffrey C.S. Wu |
Rok vydání: |
2000 |
Předmět: |
|
Zdroj: |
Catalysis Today. 63:419-426 |
ISSN: |
0920-5861 |
DOI: |
10.1016/s0920-5861(00)00487-9 |
Popis: |
The catalytic destruction of volatile organic compound (VOC) benefits from a low oxidation temperature due to less energy consumption. In this study, activated carbon-supported Pt catalysts were prepared for benzene, toluene and xylene (BTX) deep oxidation at below 200°C. Activated carbon can serve as a media for concentrating VOC. The carbon supports were heated to 400 or 800°C under N2 flow and washed with HF acid to remove surface impurities and/or minerals. The ∼0.3 wt.% Pt/activated carbon catalysts were prepared by the incipient wetness method, followed by H2 reduction at 300°C for 2 h. The catalytic oxidation was conducted with a BTX concentration ranging from 640 to 2000 ppmv in air at volume hour space velocity (VHSV) of approximately 21 000 h−1. The light-off curves were very steep and the light-off temperatures ranged between 130 and 150°C, well below those of the Pt/Al2O3 catalyst. The oxidation activity was promoted because of a higher surface BTX concentration due to the adsorption capability of activated carbons. Moisture reduces the activity only slightly due to the hydrophobicity of activated carbon. Generally, the Pt catalysts with thermally-treated activated carbon had lower ignition temperatures. Experimental results indicated that high-temperature pretreatment of activated carbon could effectively increase the catalyst activity. Meanwhile, X-ray photoelectron spectroscopy (XPS)/secondary ion mass spectroscopy (SIMS) investigation revealed that the graphitized surface might play a role in catalytic activity. Finally, this work suggested a reaction mechanism based on the adsorption-migration of hydrocarbons to reveal the enhanced activity of activated carbon support. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|