Review–Modern Data Analysis in Gas Sensors
Autor: | Md. Samiul Islam Sagar, Noah Riley Allison, Harikrishnan Muraleedharan Jalajamony, Renny Edwin Fernandez, Praveen Kumar Sekhar |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of The Electrochemical Society. 169:127512 |
ISSN: | 1945-7111 0013-4651 |
DOI: | 10.1149/1945-7111/aca839 |
Popis: | Development in the field of gas sensors has witnessed exponential growth with multitude of applications. The diverse applications have led to unexpected challenges. Recent advances in data science have addressed the challenges such as selectivity, drift, aging, limit of detection, and response time. The incorporation of modern data analysis including machine learning techniques have enabled a self-sustaining gas sensing infrastructure without human intervention. This article provides a birds-eye view on data enabled technologies in the realm of gas sensors. While elaborating the prior developments in gas sensing related data analysis, this article is poised to be an entrant for enthusiast in the domain of data science and gas sensors. |
Databáze: | OpenAIRE |
Externí odkaz: |