Temperature-Dependent Photoluminescence Studies of Ge1−ySny (y = 4.3%–9.0%) Grown on Ge-Buffered Si: Evidence for a Direct Bandgap Cross-Over Point
Autor: | Buguo Wang, Jong Su Kim, John Kouvetakis, Yung Kee Yeo, Thomas R. Harris, Mee-Yi Ryu, Michael R. Hogsed, Sang Jo Lee |
---|---|
Rok vydání: | 2019 |
Předmět: |
010302 applied physics
Cross over Materials science Photoluminescence Band gap business.industry Pl spectra Analytical chemistry General Physics and Astronomy 02 engineering and technology Chemical vapor deposition 021001 nanoscience & nanotechnology 01 natural sciences Spectral line Semiconductor 0103 physical sciences Direct and indirect band gaps 0210 nano-technology business |
Zdroj: | Journal of the Korean Physical Society. 75:577-585 |
ISSN: | 1976-8524 0374-4884 |
Popis: | The temperature (T)-dependent photoluminescence (PL) from Ge1−ySny (y = 4.3%–9.0%) alloys grown on Ge-buffered Si substrates was studied as a function of the Sn content. The PL from Ge1−ySny alloys with high Sn contents (≥7.0%) exhibited the typical characteristics of direct bandgap semiconductors, such as an increase in the PL intensity with decreasing T and a single PL peak corresponding to a transition from the direct bandgap (Γ-valley) to the valence band at all temperatures from 10 to 300 K. For the Ge1−ySny alloys with low Sn contents (≤6.2%), the PL emission peaks corresponding to both the direct bandgap (ED) and the indirect bandgap (EID) PL appeared at most temperatures and as T was increased, the integrated PL intensities of ED initially increased, then decreased, and finally increased again. The unstrained ED and EID energies estimated from the PL spectra at 75 and 125 K were plotted as functions of the Sn concentration, and the cross-over point for unstrained Ge1−ySny was found to be about 6.4%–6.7% Sn by using linear fits to the data in the range of Sn contents from 0% to 9.0%. Based on the results at 75 and 125 K, the cross-over Sn concentration of unstrained Ge1−ySny should be about 6.4%–6.7% Sn content at room temperature. The ED energies of the Ge0.925Sn0.075 alloys were estimated from the T-dependent photoreflectance spectra, and the ED values was consistent with those obtained from PL spectra. |
Databáze: | OpenAIRE |
Externí odkaz: |