Molecular Characterization of a PU.1 Transcription Complex Formed on the IL-1β Proximal Promoter

Autor: Marianne St Denis, Martin Lefrancois, Trang Hoang, Benoit Grondin, Daniel G. Tenen, Kazuo Waga
Rok vydání: 2004
Předmět:
Zdroj: Blood. 104:3547-3547
ISSN: 1528-0020
0006-4971
DOI: 10.1182/blood.v104.11.3547.3547
Popis: The gene coding for the pro-inflammatory cytokine IL-1β is induced at the transcription level in differentiating macrophages and in stress response. Interestingly, PU.1 and C/EBPβ, two transcription factors implicated in IL-1β gene expression are not induced by stress exposure, while c-Jun is strongly induced. Strikingly, this upregulation of c-Jun is required for IL-1β induction, as cells expressing a c-Jun antisense construct fail to respond to stress exposure. We have mapped the induction of IL-1β gene expression to its proximal promoter and show that it is mediated by the transcriptional synergy between C/EBPβ, c-Jun and PU.1 via specific DNA binding sites for C/EBPβ and PU.1 only. To elucidate how PU.1 and C/EBPβ cooperate with c-Jun at the molecular level, we have optimized a DNA binding assay based on IL-1β promoter fragments immobilized on beads to isolate protein complexes from nuclear extracts, which were subsequently eluted and identified by Western blotting. We show that PU.1 or C/EBPβ alone directly bind this promoter fragment via specific sequences while purified recombinant c-Jun fails to do so. However, the presence of either PU.1 or C/EBPβ on the promoter allows for a recruitment of c-Jun to the DNA template, mediated by direct protein-protein interaction. Interestingly, the leucine zipper domain of c-Jun is essential for its interaction with C/EBPβ while dispensable for PU.1 interaction in vitro whereas its basic domain is required for both interactions. Furthermore, we show that PU.1 and C/EBPβ cooperatively bind the IL-1β promoter, resulting in a synergistic recruitment of c-Jun. Finally, we show that the strength of interaction of c-Jun mutants with PU.1 or C/EBPβ determine the strength of transcription output and c-Jun mutants that fail to associate with either PU.1 or C/EBPβ are transcriptionally inactive. In contrast, c-Jun mutants exhibiting increased homodimerization are more active that the wild type protein. Taken together, our data suggest that c-Jun homodimers can be targeted to the IL-1β promoter in the absence of a specific DNA binding element, and conclude that PU.1 and C/EBPβ are specifically tethered to the IL-1β promoter while c-Jun cooperatively binds these proteins and acts as a transcriptional co-activator. We propose a mechanism based on an initial binding of PU.1 and C/EBPβ to the IL-1β promoter followed by a cooperative recruitment of c-Jun, resulting in transcriptional synergy and IL-1β gene expression in stress response.
Databáze: OpenAIRE