Unique factorization properties in commutative monoid rings with zero divisors

Autor: Christopher Mooney, Rhys D. Roberts, J. R. Juett
Rok vydání: 2021
Předmět:
Zdroj: Semigroup Forum. 102:674-696
ISSN: 1432-2137
0037-1912
DOI: 10.1007/s00233-020-10154-x
Popis: Several different versions of “factoriality” have been defined for commutative rings with zero divisors. We apply semigroup theory to study these notions in the context of a commutative monoid ring R[S], determining necessary and sufficient conditions for R[S] to be various kinds of “unique factorization rings.” Our work generalizes Anderson et al.’s results about “unique factorization” in R[X], Gilmer and Parker’s characterization of factorial monoid domains, and Hardy and Shores’s classification of when R[S] is a principal ideal ring (for S cancellative). Along the way, we determine when R[S] is “restricted cancellative” or satisfies various “(restricted) ideal cancellation laws.”
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje