PERANCANGAN MODEL UNTUK PERAMALAN TINGKAT PERTUMBUHAN PEMBIAYAAN MELALUI METODE JARINGAN SARAF TIRUAN DI BNI SYARIAH

Autor: Susianah Mokhtar, Orfyanny S Themba
Rok vydání: 2020
Zdroj: Jurnal Ekonomi Pembangunan STIE Muhammadiyah Palopo. 6
ISSN: 2580-524X
2339-1529
DOI: 10.35906/jep01.v6i2.587
Popis: Tren perkembangan pembiayaan di Indonesia mulai meningkat namun cenderung melambat dari tahun ke tahun. Peramalan pertumbuhan pembiayaan pada bank syariah menjadi hal yang menarik karena naik turunnya pembiayaan akan berdampak pada perekonomian Indonesia. Tujuan dari penelitian ini melakukan peramalan pertumbuhan pembiayaan dalam jangka waktu setahun melalui metode Jaringan Saraf Tiruan pada data Bank BNI Syariah dari tahun 2015 sampai dengan 2019. Hasil dari peramalan diharapkan memberi informasi bagi bank untuk menunjang pengambilan keputusan dan menyiapkan strategi meningkatkan pembiayaan sehingga semakin besar laba yang akan diperoleh. Model peramalan dibuat berdasarkan metode peramalan dan ditujukan untuk digunakan pada aplikasi peramalan pembiayaan. Model Jaringan Saraf Tiruan memiliki nilai akurasi peramalan yang tinggi karena memiliki nilai error RMSE, MAPE yang minimum. Dari hasil peramalan menggunakan model Jaringan Saraf Tiruan menunjukkan terjadi peningkatan pembiayaan pada setiap bulannya untuk akad murabahah, mudharabah, musyarakah dan qardh. Hanya pembiayaan yang menggunakan ijarah yang mengalami penurunan drastis dibanding tahun-tahun sebelumnya. Pembiayaan murabahah masih tetap mendominasi dibanding akad mudharabah, musyarakah, qardh dan ijarah selama tahun 2020 Kata Kunci: Jaringan Saraf Tiruan ;PembiayaanABSTRACT Trend of financing development in Indonesia is starting to increase but tends to slow down from year to year. It is interesting to forecast the growth of financing in Islamic banks because the up and down of financing will have an impact on the Indonesian economy. The purpose of this study to forecast financing growth within a year through the Neural Network method on BNI Syariah Bank data from 2015 to 2019. The results of the forecast are expected to provide information for banks to support decision making and prepare strategies to increase financing so that greater profits that will be obtained. The forecasting model is made based on the forecasting method and is intended for use in financing forecasting applications. The Artificial Neural Network Model has a high value of forecasting accuracy because it has a minimum error value of RMSE, MAPE. The results of forecasting using the Artificial Neural Network model show an increase in financing every month for murabahah, mudharabah, musyarakah and qardh contracts. Only financing using ijarah has experienced a drastic decline compared to previous years. Murabahah financing still dominates over the mudharabah, musyarakah, qardh and ijarah contracts during 2020Keyword: Arificial Neural Network ;Financing
Databáze: OpenAIRE