A conformal inequality related to the conditional gauge theorem
Autor: | Terry R. McConnell |
---|---|
Rok vydání: | 1990 |
Předmět: | |
Zdroj: | Transactions of the American Mathematical Society. 318:721-733 |
ISSN: | 1088-6850 0002-9947 |
DOI: | 10.1090/s0002-9947-1990-0957083-8 |
Popis: | We prove the inequality h ( x ) − 1 G ( x , y ) h ( y ) ⩽ c G ( x , y ) + c h{(x)^{ - 1}}G(x,y)h(y) \leqslant cG(x,y) + c , where G G is the Green function of a plane domain D , h D,\;h is positive and harmonic on D D , and c c is a constant whose value depends on the topological nature of the domain. In particular, for the class of proper simply connected domains c c may be taken to be an absolute constant. As an application, we prove the Conditional Gauge Theorem for plane domains of finite area for which the constant c c in the above inequality is finite. |
Databáze: | OpenAIRE |
Externí odkaz: |