A conformal inequality related to the conditional gauge theorem

Autor: Terry R. McConnell
Rok vydání: 1990
Předmět:
Zdroj: Transactions of the American Mathematical Society. 318:721-733
ISSN: 1088-6850
0002-9947
DOI: 10.1090/s0002-9947-1990-0957083-8
Popis: We prove the inequality h ( x ) − 1 G ( x , y ) h ( y ) ⩽ c G ( x , y ) + c h{(x)^{ - 1}}G(x,y)h(y) \leqslant cG(x,y) + c , where G G is the Green function of a plane domain D , h D,\;h is positive and harmonic on D D , and c c is a constant whose value depends on the topological nature of the domain. In particular, for the class of proper simply connected domains c c may be taken to be an absolute constant. As an application, we prove the Conditional Gauge Theorem for plane domains of finite area for which the constant c c in the above inequality is finite.
Databáze: OpenAIRE