A central limit theorem for Hermitian polynomials of independent Gaussian variables
Autor: | A. V. Skorokhod, V. I. Stepakhno |
---|---|
Rok vydání: | 1990 |
Předmět: | |
Zdroj: | Ukrainian Mathematical Journal. 42:1515-1521 |
ISSN: | 1573-9376 0041-5995 |
DOI: | 10.1007/bf01060823 |
Popis: | The conditions of asymptotic normality of the variables\(\eta _n = _{1 \leqslant i_j< ...< i, \leqslant 11}^{ \Sigma H(\delta _{lj} ,...,\delta _{ir} )} \) are studied for n→∞ and m→∞, with H(x1, ..., xr) denoting Hermitian polynomials in (Rm)r, and the ξ1, ..., ξn being independent Gaussian vectors in X=Rm with a zero mean and a unit correlation operator. |
Databáze: | OpenAIRE |
Externí odkaz: |