Atkin–Lehner theory for Drinfeld modular forms and applications
Autor: | Maria Valentino |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | The Ramanujan Journal. 58:633-649 |
ISSN: | 1572-9303 1382-4090 |
DOI: | 10.1007/s11139-021-00465-0 |
Popis: | The present paper deals with Atkin–Lehner theory for Drinfeld modular forms. We provide an equivalent definition of $$\mathfrak {p}$$ -newforms (which makes computations easier) and commutativity results between Hecke operators and Atkin–Lehner involutions. As applications, we show a criterion for a direct sum decomposition of cusp forms, we exhibit $$\mathfrak {p}$$ -newforms arising from lower levels and we provide $$\mathfrak {p}$$ -adic Drinfeld modular forms of level greater than 1. |
Databáze: | OpenAIRE |
Externí odkaz: |