Atkin–Lehner theory for Drinfeld modular forms and applications

Autor: Maria Valentino
Rok vydání: 2021
Předmět:
Zdroj: The Ramanujan Journal. 58:633-649
ISSN: 1572-9303
1382-4090
DOI: 10.1007/s11139-021-00465-0
Popis: The present paper deals with Atkin–Lehner theory for Drinfeld modular forms. We provide an equivalent definition of $$\mathfrak {p}$$ -newforms (which makes computations easier) and commutativity results between Hecke operators and Atkin–Lehner involutions. As applications, we show a criterion for a direct sum decomposition of cusp forms, we exhibit $$\mathfrak {p}$$ -newforms arising from lower levels and we provide $$\mathfrak {p}$$ -adic Drinfeld modular forms of level greater than 1.
Databáze: OpenAIRE