A Public Key Cryptosystem Using a Group of Permutation Polynomials

Autor: Anupam Saikia, Rajesh P. Singh, Bhaba Kumar Sarma
Rok vydání: 2020
Předmět:
Zdroj: Tatra Mountains Mathematical Publications. 77:139-162
ISSN: 1210-3195
DOI: 10.2478/tmmp-2020-0013
Popis: In this paper we propose an efficient multivariate encryption scheme based on permutation polynomials over finite fields. We single out a commutative group ℒ(q, m) of permutation polynomials over the finite field F q m. We construct a trapdoor function for the cryptosystem using polynomials in ℒ(2, m), where m =2 k for some k ≥ 0. The complexity of encryption in our public key cryptosystem is O(m 3) multiplications which is equivalent to other multivariate public key cryptosystems. For decryption only left cyclic shifts, permutation of bits and xor operations are used. It uses at most 5m 2+3m – 4 left cyclic shifts, 5m 2 +3m + 4 xor operations and 7 permutations on bits for decryption.
Databáze: OpenAIRE