Spectral Determinant on Euclidean Isosceles Triangle Envelopes
Autor: | Victor Kalvin |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | The Journal of Geometric Analysis. 31:12347-12374 |
ISSN: | 1559-002X 1050-6926 |
DOI: | 10.1007/s12220-021-00717-x |
Popis: | We study extremal properties of the determinant of Friedrichs selfadjoint Laplacian on the Euclidean isosceles triangle envelopes of fixed area as a function of angles. We deduce an explicit closed formula for the determinant. Small-angle asymptotics show that the determinant grows without any bound as an angle of a triangle envelope goes to zero. We prove that the equilateral triangle envelope (the most symmetrical geometry) always gives rise to a critical point of the determinant and finds the critical value. When the area is below a certain value (approximately 1.92), the equilateral envelope minimizes the determinant. When the area exceeds this value, the equilateral envelope is a local maximum of the determinant. |
Databáze: | OpenAIRE |
Externí odkaz: |