Gradient piezoelectricity for cracks under an impact load
Autor: | Michael Wünsche, Vladimir Sladek, Jozef Kasala, Jan Sladek |
---|---|
Rok vydání: | 2018 |
Předmět: |
Materials science
Cauchy stress tensor Constitutive equation Computational Mechanics 02 engineering and technology Mechanics 021001 nanoscience & nanotechnology Piezoelectricity Finite element method Dynamic load testing Condensed Matter::Materials Science 020303 mechanical engineering & transports 0203 mechanical engineering Mechanics of Materials Variational principle Modeling and Simulation Boundary value problem Virtual work 0210 nano-technology |
Zdroj: | International Journal of Fracture. 210:95-111 |
ISSN: | 1573-2673 0376-9429 |
DOI: | 10.1007/s10704-018-0264-0 |
Popis: | The flexoelectric effect on elastic waves is investigated in nano-sized cracked structures. The strain gradients are considered in the constitutive equations of a piezoelectric solid for electric displacements and the higher-order stress tensor. The governing equations with the corresponding boundary conditions are derived from the variational principle. The finite element method (FEM) is developed from the principle of virtual work. It is equivalent to the weak-form of derived governing equations in gradient elasticity. The computational method can be applied to analyze general 2D boundary value problems in size-dependent piezoelectric elastic solids with cracks under a dynamic load. The FEM formulation is implemented for strain-gradient piezoelectricity under a dynamic load. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |