Duality for Hardy Spaces in Domains of $$\mathbb {C}^n$$ C n and Some Applications
Autor: | Victor Gotlib, Alekos Vidras, Lev Aizenberg |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Complex Analysis and Operator Theory. 8:1341-1366 |
ISSN: | 1661-8262 1661-8254 |
DOI: | 10.1007/s11785-013-0337-z |
Popis: | Let $$\Omega \subset \mathbb {C}^n $$ be a bounded, strictly convex domain with $${{\mathcal {C}}}^3$$ boundary and $$\widetilde{\Omega }$$ be its dual complement. We prove that $$(H^p(\Omega ))^{\prime }=H^q(\widetilde{\Omega })$$ , where $$p>1$$ and $${1\over p}+{1\over q}=1$$ . As an application of the above results we give the precise description of the dual space of the space of holomorphic functions defined in a special type of domains $$\Omega \subset \mathbb {C}^n$$ and which are representable by Carleman integral representation formula. |
Databáze: | OpenAIRE |
Externí odkaz: |