Regularity results for a class of doubly nonlinear very singular parabolic equations

Autor: Vincenzo Vespri, Eurica Henriques, Simona Fornaro
Rok vydání: 2021
Předmět:
Zdroj: Nonlinear Analysis. 205:112213
ISSN: 0362-546X
DOI: 10.1016/j.na.2020.112213
Popis: The aim of this paper is to present several properties of the nonnegative weak solutions to a class of very singular equations whose prototype is u t = div ( u m − 1 | D u | p − 2 D u ) , p > 1 and 3 − p m + p 2 . Namely, we prove L loc r and L loc r − L loc ∞ estimates and Harnack estimates. Note that 3 − p = m + p is a critical value: under this threshold the energy estimates hold with a reverse sign.
Databáze: OpenAIRE