Matrix Fatigue Cracking in α

Autor: Timothy P. Gabb, John Gayda
Rok vydání: 2009
Předmět:
DOI: 10.1520/stp18233s
Popis: The objective of this work was to understand matrix cracking mechanisms in a unidirectional {alpha}{sub 2} titanium matrix composite (TMC) in possible hypersonic applications. A [0]{sub 8} SCS-6/Ti-24Al-11Nb (atomic %) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.
Databáze: OpenAIRE