Coxeter-Catalan Combinatorics and Temperley–Lieb Algebras

Autor: Thomas Gobet
Rok vydání: 2020
Předmět:
Zdroj: Algebras and Representation Theory. 24:169-201
ISSN: 1572-9079
1386-923X
DOI: 10.1007/s10468-019-09940-1
Popis: We introduce bijections between generalized type An noncrossing partitions (that is, associated to arbitrary standard Coxeter elements) and fully commutative elements of the same type. The latter index the diagram basis of the classical Temperley–Lieb algebra, while for each choice of standard Coxeter element the corresponding noncrossing partitions also index a basis, given by the images in the Temperley–Lieb algebra of the simple elements of the dual Garside structure (associated to this choice of standard Coxeter element) of the Artin braid group on n + 1 strands. We then show that our bijections come from triangular base changes between the diagram basis and the various bases indexed by noncrossing partitions, by explicitly describing the orders giving triangularity. These orders were introduced in a joint paper with Williams and provide exotic lattice structures on noncrossing partitions. Several combinatorial objects are introduced along the way, including an involution on the set of noncrossing partitions.
Databáze: OpenAIRE