Popis: |
Conjugate heat transfer analysis method has been highlighted for predicting heat exchange between fluid domain and solid domain inside high-pressure turbines, which are exposed to very harsh operating conditions. Then it is able to assess the overall cooling effectiveness considering both internal cooling and external film cooling at the cooled turbine design step. In this study, high-pressure turbine nozzles, which have three different film cooling holes arrangements, were numerically simulated with conjugate heat transfer analysis method for predicting overall cooling effectiveness. The film cooling holes distributed over the nozzle pressure surface were optimized by minimizing the peak temperature, temperature deviation. Additional internal cooling components such as pedestals and rectangular rib turbulators were modeled inside the cooling passages for more efficient heat transfer. The real engine conditions were given for boundary conditions to fluid and solid domains for conjugate heat transfer analysis. Hot combustion gas properties such as specific heat at constant pressure and other transport properties were given as functions of temperature. Also, the conductivity of Inconel 718 was also given as a function of temperature to solve the heat equation in the nozzle solid domain. Conjugate heat transfer analysis results showed that optimized designs showed better cooling performance, especially on the pressure surface due to proper staggering and spacing hole-rows compared to the baseline design. The overall cooling performances were offset from the adiabatic film cooling effectiveness. Locally concentrated heat transfer and corresponding high cooling effectiveness region appeared where internal cooling effects were overlapped in the optimized designs. Also, conjugate heat transfer analysis results for the optimized designs showed more uniform contours of the overall cooling effectiveness compared to the baseline design. By varying the coolant mass flow rate, it was observed that pressure surface was more sensitive to the coolant mass flow rate than nozzle leading edge stagnation region and suction surface. The CHT results showed that optimized designs to improve the adiabatic film cooling effectiveness also have better overall cooling effectiveness. |