Dependence of Threading Dislocation Density on Substrate Misorientation in In0.15Ga0.85As Grown on GaAs(100)

Autor: J.S. Ahearn, P.N. Uppal, Rodney A. Herring
Rok vydání: 1989
Předmět:
Zdroj: MRS Proceedings. 145
ISSN: 1946-4274
0272-9172
DOI: 10.1557/proc-145-385
Popis: The density and arrangement of dislocations in In0.15Ga0.85As grown on GaAs(100)) were determined by transmission electron microscopy as a function of misorientation toward (111)A, (111)B, and (110). Strained layer superlattices were used in all cases to reduce dislocation density. Layers grown on exact GaAs(100) exhibited a non-uniform threading dislocation dis- tribution whereby some areas had a high density (∼ 109cm-2or higher) of dislocation tangles and other areas that we in between had a more uniform density (∼ 2 x 107cm-2). The misorientated layers exhibited a uniform threading dislocation distribution with densities of ∼ 5 x 106 cm-2 for (100) misoriented towards (111)A, ∼ 1 x 107cm-2towards (111)B, and ∼ 3 x 107cm-2 towards (110). The misfit dislocation network (dislocations located at the GaAs-InO0.15Ga0.85 As interface) formed orthogonal dislocation arrays in the case of exact (100) substrates and slightly non-ortho- gonal arrays in the case of misoriented substrates. These results are explained with the help of a general glide model of strain relaxation in which the exact (100) orientation has eight equally stressed glide systems which presumably activate during strain relaxation. With misoriented substrates the stress symmetry is broken and fewer glide systems experience the maximum stress, thus reducing the number of active dislocation systems. A small asymmetry in interfacial dis- location density was observed in all the cases where the linear dislocation density along the two (011) and (011) orthogonal directions differed by about 20%. This is explained by the preferred activation of (x-dislocations (high dislocation mobility) over 13-dislocations (low dislocation mobility).
Databáze: OpenAIRE