Popis: |
This work relates to developing thermal protection for a finite period of exposure to a high temperature environment. This type of transient heat transfer problem starts with a heating period, which is then followed by a cooling period once the high temperature environment disappears. The study is particularly relevant to the thermal protection of flight data recorders from high temperature flame. In this work, transient heat conduction through a three-concentric-layer configuration is numerically studied, which includes a metal housing, a thermal insulation, and a phase change material. The thermal performance is evaluated using the center temperature changing with time. It is found that the center temperature reaches a peak during cooling period rather than heating period. Time taken to reach the peak and the peak value depend on the sizes and properties of the layers. The properties include latent heat of fusion, melting temperature, heat capacities, and thermal conductivities. Parametric study is conducted to analyze and distinguish the influence of these parameters. The study provides general guidance for determining sizes and selecting materials for the thermal design of flight data recorders. Additionally, the study is also useful for other similar applications, for which thermal management and protection over a period of time is needed. In this paper, analysis starts with a baseline configuration composed of specific materials and sizes. Finite changes are applied to sizes, properties of the materials, and the results are compared to understand the roles of the varied parameters in affecting the thermal protection performance. |