Comparing the Predictive Performance, Interpretability, and Accessibility of Machine Learning and Physically Based Models for Water Treatment

Autor: Graham A. Gagnon, Benjamin F. Trueman, William J. Raseman, Dewey W. Dunnington, Lindsay E. Anderson
Rok vydání: 2020
Předmět:
Zdroj: ACS ES&T Engineering. 1:348-356
ISSN: 2690-0645
DOI: 10.1021/acsestengg.0c00053
Popis: Using an organic carbon removal data set (n = 500), we compared a physically based semiempirical coagulation model (Langmuir sorption-removal) and three ML modeling methods using quantitative (mode...
Databáze: OpenAIRE