The Transcriptional Regulation and Ubiquitination Dependent Regulation of Hnrnpk Oncogenic Function in Prostate Tumorigenesis

Autor: Huan-Lei Wu, Sen-Mao Li, Yao-chen Huang, Qi-Dong Xia, Peng Zhou, Xian-Miao Li, Xiao Yu, Shao-Gang Wang, Zhang-Qun Ye, Jia Hu
Rok vydání: 2021
DOI: 10.21203/rs.3.rs-452319/v1
Popis: Background Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid-binding protein that regulates diverse biological events. Pathologically, hnRNPK proteins are frequently overexpressed and clinically correlated with poor prognosis to various types of human cancers, therefore pursued as attractive therapeutic targets for selective patients. However, both the transcriptional regulation and degradation of hnRNPK in prostate cancer are remain poorly understood. Methods qRT-PCR was used to detect the expression of hnRNPK and miRNA; Immunoblots and immunohistochemical assays were used to determine the levels of hnRNPK and other proteins. Flow cytometry was used to investigate cell cycle stage. MTS and clonogenic assays were used to investigate cell proliferation. Immunoprecipitation was used to analyze the interaction between SPOP and hnRNPK. A prostate carcinoma xenograft mouse model was used to detect the in vivo effects of hnRNPK and miRNA. Results In the present study, we observed that hnRNPK emerged as an important player in carcinogenesis process of PrCa. miR-206 and miR-613 suppressed hnRNPK expression by targeting the 3’-UTR of hnRNPK in PrCa cell lines, where hnRNP K is overexpressed. In biological effects studies, proliferation and colony formation of PrCa cells in vitro, and tumor growth in vivo, were also dramatically suppressed upon reintroduction of miR-206/ miR-613. We have further provided clear evidence that Cullin 3 SPOP as a novel upstream E3 ubiquitin ligase complex that governs hnRNPK proteins stability and oncogenic functions through promoting the degradation of HnRNP K in a poly-ubiquitinaion dependent proteolysis in the prostate cancer setting. Moreover, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of hnRNPK proteins. Conclusion Our finding reveal new post-transcriptional and post-translational modifications mechanism of hnRNPK regulation via miR-206/ miR-613 and SPOP, respectively. More important, given the critical oncogenic role of hnRNPK and high frequency of SPOP mutation in prostate cancer, our results provide a molecular rationale for the clinical investigation of novel strategies to combat prostate cancer based on SPOP genetic status.
Databáze: OpenAIRE