Autor: |
Tzu-Chun Yeh, Roger Jang, Li Su, Yi-Hsuan Yang, Tak-Shing T. Chan, Zhe-Cheng Fan, Hung-Wei Chen |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
ICASSP |
DOI: |
10.1109/icassp.2015.7178063 |
Popis: |
A new algorithm is proposed for robust principal component analysis with predefined sparsity patterns. The algorithm is then applied to separate the singing voice from the instrumental accompaniment using vocal activity information. To evaluate its performance, we construct a new publicly available iKala dataset that features longer durations and higher quality than the existing MIR-1K dataset for singing voice separation. Part of it will be used in the MIREX Singing Voice Separation task. Experimental results on both the MIR-1K dataset and the new iKala dataset confirmed that the more informed the algorithm is, the better the separation results are. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|