Popis: |
In this study, a multilevel correction-type goal-oriented adaptive finite element method is designed for semilinear elliptic equations. Concurrently, the corresponding convergence property is theoretically proved. In the novel goal-oriented adaptive finite element method, only a linearized primal equation and a linearized dual equation are required to be solved in each adaptive finite element space. To ensure convergence, the approximate solution of the primal equation was corrected by solving a small-scale semilinear elliptic equation after the central solving process in each adaptive finite element space. Since solving of the large-scale semilinear elliptic equations is avoided and the goal-oriented technique is absorbed, there has been a significant improvement in the solving efficiency for the goal functional of semilinear elliptic equations. |