Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks

Autor: Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Kimberley Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, Claus Zehner
Rok vydání: 2020
Předmět:
Popis: This paper reports on consolidated ground-based validation results of the atmospheric NO2 data produced operationally since April 2018 by the TROPOMI instrument on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5p) satellite. Tropospheric, stratospheric, and total NO2 column data from S5p are compared to correlative measurements collected from, respectively, 19 Multi-Axis DOAS (MAX-DOAS), 26 NDACC Zenith-Scattered-Light DOAS (ZSL-DOAS), and 25 PGN/Pandora instruments distributed globally. The validation methodology gives special care to minimizing mismatch errors due to imperfect spatio-temporal co-location of the satellite and correlative data, e.g., by using tailored observation operators to account for differences in smoothing and in sampling of atmospheric structures and variability, and photochemical modelling to reduce diurnal cycle effects. Compared to the ground-based measurements, S5p data show, on an average: (i) a negative bias for the tropospheric column data, of typically −23 to −37 % in clean to slightly polluted conditions, but reaching values as high as −51 % over highly polluted areas; (ii) a slight negative bias for the stratospheric column data, of about −0.2 Pmolec/cm2, i.e. approx. −2 % in summer to −15 % in winter; and (iii) a bias ranging from zero to −50 % for the total column data, found to depend on the amplitude of the total NO2 column, with small to slightly positive bias values for columns below 6 Pmolec/cm2 and negative values above. The dispersion between S5p and correlative measurements contains mostly random components, which remain within mission requirements for the stratospheric column data (0.5 Pmolec/cm2), but exceed those for the tropospheric column data (0.7 Pmolec/cm2). While a part of the biases and dispersion may be due to representativeness differences, it is known that errors in the S5p tropospheric columns exist due to shortcomings in the (horizontally coarse) a-priori profile representation in the TM5-MP chemistry transport model used in the S5p retrieval, and to a lesser extent, to the treatment of cloud effects. Although considerable differences (up to 2 Pmolec/cm2 and more) are observed at single ground-pixel level, the near-real-time (NRTI) and off-line (OFFL) versions of the S5p NO2 operational data processor provide similar NO2 column values and validation results when globally averaged, with the NRTI values being on average 0.79 % larger than the OFFL values.
Databáze: OpenAIRE