On maps preserving square roots of idempotent and rank-one nilpotent matrices
Autor: | Nikita Borisov, Hayden Julius, Martha Sikora |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Algebra and Its Applications. 21 |
ISSN: | 1793-6829 0219-4988 |
DOI: | 10.1142/s0219498822501237 |
Popis: | We characterize bijective linear maps on [Formula: see text] that preserve the square roots of an idempotent matrix (of any rank). Every such map can be presented as a direct sum of a map preserving involutions and a map preserving square-zero matrices. Next, we consider bijective linear maps that preserve the square roots of a rank-one nilpotent matrix. These maps do not have standard forms when compared to similar linear preserver problems. |
Databáze: | OpenAIRE |
Externí odkaz: |