On maps preserving square roots of idempotent and rank-one nilpotent matrices

Autor: Nikita Borisov, Hayden Julius, Martha Sikora
Rok vydání: 2021
Předmět:
Zdroj: Journal of Algebra and Its Applications. 21
ISSN: 1793-6829
0219-4988
DOI: 10.1142/s0219498822501237
Popis: We characterize bijective linear maps on [Formula: see text] that preserve the square roots of an idempotent matrix (of any rank). Every such map can be presented as a direct sum of a map preserving involutions and a map preserving square-zero matrices. Next, we consider bijective linear maps that preserve the square roots of a rank-one nilpotent matrix. These maps do not have standard forms when compared to similar linear preserver problems.
Databáze: OpenAIRE