Wait, Wait. No, Tell Me. Analyzing Selenium Configuration Effects on Test Flakiness

Autor: Kathryn T. Stolee, Kai Presler-Marshall, Sarah Heckman, Eric Horton
Rok vydání: 2019
Předmět:
Zdroj: AST@ICSE
DOI: 10.1109/ast.2019.000-1
Popis: Flaky tests are a source of frustration and uncertainty for developers. In an educational environment, flaky tests can create doubts related to software behavior and student grades, especially when the grades depend on tests passing. NC State University's junior-level software engineering course models industrial practice through team-based development and testing of new features on a large electronic health record (EHR) system, iTrust2. Students are expected to maintain and supplement an extensive suite of UI tests using Selenium WebDriver. Team builds are run on the course's continuous integration (CI) infrastructure. Students report, and we confirm, that tests that pass on one build will inexplicably fail on the next, impacting productivity and confidence in code quality and the CI system. The goal of this work is to find and fix the sources of flaky tests in iTrust2. We analyze configurations of Selenium using different underlying web browsers and timeout strategies (waits) for both test stability and runtime performance. We also consider underlying hardware and operating systems. Our results show that HtmlUnit with Thread waits provides the lowest number of test failures and best runtime on poor-performing hardware. When given more resources (e.g., more memory and a faster CPU), Google Chrome with Angular waits is less flaky and faster than HtmlUnit, especially if the browser instance is not restarted between tests. The outcomes of this research are a more stable and substantially faster teaching application and a recommendation on how to configure Selenium for applications similar to iTrust2 that run in a CI environment.
Databáze: OpenAIRE