A high-order fully discrete scheme for the Korteweg–de Vries equation with a time-stepping procedure of Runge–Kutta-composition type

Autor: Angel Durán, Vassilios A. Dougalis
Rok vydání: 2021
Předmět:
Zdroj: IMA Journal of Numerical Analysis. 42:3022-3057
ISSN: 1464-3642
0272-4979
DOI: 10.1093/imanum/drab060
Popis: We consider the periodic initial-value problem for the Korteweg–de Vries equation that we discretize in space by a spectral Fourier–Galerkin method and in time by an implicit, high-order, Runge–Kutta scheme of composition type based on the implicit midpoint rule. We prove $L^{2}$ error estimates for the resulting semidiscrete and the fully discrete approximations. Some numerical experiments illustrate the results.
Databáze: OpenAIRE