A high-order fully discrete scheme for the Korteweg–de Vries equation with a time-stepping procedure of Runge–Kutta-composition type
Autor: | Angel Durán, Vassilios A. Dougalis |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | IMA Journal of Numerical Analysis. 42:3022-3057 |
ISSN: | 1464-3642 0272-4979 |
DOI: | 10.1093/imanum/drab060 |
Popis: | We consider the periodic initial-value problem for the Korteweg–de Vries equation that we discretize in space by a spectral Fourier–Galerkin method and in time by an implicit, high-order, Runge–Kutta scheme of composition type based on the implicit midpoint rule. We prove $L^{2}$ error estimates for the resulting semidiscrete and the fully discrete approximations. Some numerical experiments illustrate the results. |
Databáze: | OpenAIRE |
Externí odkaz: |