Percolation of Finite Clusters and Shielded Paths
Autor: | Bounghun Bock, Vladas Sidoravicius, Charles M. Newman, Michael Damron |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Statistical Physics. 179:789-807 |
ISSN: | 1572-9613 0022-4715 |
DOI: | 10.1007/s10955-020-02558-4 |
Popis: | In independent bond percolation on $${\mathbb {Z}}^d$$ with parameter p, if one removes the vertices of the infinite cluster (and incident edges), for which values of p does the remaining graph contain an infinite connected component? Grimmett-Holroyd-Kozma used the triangle condition to show that for $$d \ge 19$$, the set of such p contains values strictly larger than the percolation threshold $$p_c$$. With the work of Fitzner-van der Hofstad, this has been reduced to $$d \ge 11$$. We improve this result by showing that for $$d \ge 10$$ and some $$p>p_c$$, there are infinite paths consisting of “shielded” vertices—vertices all whose adjacent edges are closed—which must be in the complement of the infinite cluster. Using values of $$p_c$$ obtained from computer simulations, this bound can be reduced to $$d \ge 7$$. Our methods are elementary and do not require the triangle condition. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |