Benzophenone and zinc(II) phthalocyanine dichromophores labeled poly (aryl ether) dendrimer: Synthesis, characterization and photoinduced energy transfer

Autor: Zhang, Tian-Tian, Pan, Su-Juan, Ma, Dong-Dong, Liu, Jian-Sheng, Chen, Kui-Zhi, Peng, Yi-Ru
Rok vydání: 2015
DOI: 10.6084/m9.figshare.1623199.v1
Popis: A series of benzophenone chromospheres and zinc(II) phthalocyanine dichromophores labeled poly (aryl benzyl ether) dendrimer (Gn-DZnPc(BP)8n, n=1-2) were synthesized. Their structures were characterized by elemental analysis, 1H NMR, IR, UV-Vis and matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF MS). Their photophysical properties were examined by steady-state and time-resolved fluorescence methods. Both the poly (aryl benzyl ether) dendrimer and BP terminal chromophores had a significant effect on photophysical properties of the zinc(II) phthalocyanine core. Time-resolved spectroscopic measurements indicated that the lifetime of benzophenone (donor) chromophore was longer than that of the zinc(II) phthalocyanine (acceptor). The fluorescence of the peripheral benzophenone chromophores was quenched by the phthalocyanine group attached to the focal point. All of these observations suggest that an intramolecular singlet energy transfer occurs in Gn-DZnPc(BP)8n molecules. The light-harvesting abilities of these molecules increased with generations due to an increase in the number of benzophenone chromophores. The energy transfer efficiencies were ca. 0.49 and 0.68 for generations 1 and 2, respectively, and the rate constants of the singlet-singlet energy transfer were ca. 108 s−1. The rate constants changed inconspicuously with increase of dendron generations. The intramolecular singlet-singlet energy transfer is proposed to proceed mainly via a Förster-type interaction mechanism involving the dendrimer backbone as a scaffold to hold the peripheral benzophenone chromophores and the phthalocyanine core together. This dendrimer was an effective new energy transmission complex with high efficiency and could be used as a potential light-harvesting system.
Databáze: OpenAIRE