Infinitesimal deformations of some SO(3,1) lattices

Autor: Kevin P. Scannell
Rok vydání: 2000
Předmět:
Zdroj: Pacific Journal of Mathematics. 194:455-464
ISSN: 0030-8730
DOI: 10.2140/pjm.2000.194.455
Popis: Let Γ be a torsion-free lattice in SO0(3, 1), and let M = Γ\H3 be the corresponding hyperbolic 3-manifold. It is wellknown that in the presence of a closed, embedded, totallygeodesic surface in M , the canonical flat conformal structure on M can be deformed via the bending construction. Equivalently, the lattice Γ admits non-trivial deformations into SO0(4, 1). We present a new construction of infinitesimal deformations for the hyperbolic Fibonacci manifolds, the smallest of which is non-Haken and contains no immersed totally geodesic surface.
Databáze: OpenAIRE