Computing Elliptic Curves over $$\mathbb{Q}$$ : Bad Reduction at One Prime
Autor: | Andrew Rechnitzer, Michael A. Bennett |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Mathematics::Number Theory Sato–Tate conjecture 010103 numerical & computational mathematics 01 natural sciences Supersingular elliptic curve Invariant theory Prime (order theory) Conductor 010101 applied mathematics Reduction (complexity) Elliptic curve 0101 mathematics Mathematics |
Zdroj: | Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science ISBN: 9781493969685 |
DOI: | 10.1007/978-1-4939-6969-2_13 |
Popis: | We discuss a new algorithm for finding all elliptic curves over \(\mathbb{Q}\) with a given conductor. Though based on (very) classical ideas, this approach appears to be computationally quite efficient. We provide details of the output from the algorithm in case of conductor p or p 2, for p prime, with comparisons to existing data. |
Databáze: | OpenAIRE |
Externí odkaz: |