Abstract 1635: In Vivo Color Mapping Of Shear Stress Along Coronary Arterial Lumen With Multi-detector Computed Tomography
Autor: | Yusaku Fukumoto, Takafumi Hiro, Takashi Fujii, Mitsuyuki Hiromoto, Masakazu Tanaka, Michio Yamada, Masunori Matsuzaki |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Circulation. 116 |
ISSN: | 1524-4539 0009-7322 |
DOI: | 10.1161/circ.116.suppl_16.ii_342-c |
Popis: | Background and Purpose: Shear stress is one of the important physical factors in the process of atherosclerosis. However, noninvasive and in-vivo visualization of shear stress distribution along the coronary lumen has been technically difficult, because it is not so possible to assess true three-dimensional (3D) geometrical structure as well as local flow profile in coronary artery for each patient. Recent technology of multi-detector computed tomography (MDCT) can provide an accurate representation of 3D architecture of coronary lumen as well as plaque distribution. This study was to develop a noninvasive way of color mapping of shear stress in coronary artery using a 64-row MDCT, and to preliminarily evaluate its clinical feasibility. Methods: Three-dimensional geometric architecture from patients with mild coronary artery disease was first obtained to develop a 3D mesh polygon model of each left and right coronary artery architecture. The mesh data was then used to perform a shear stress color mapping with a computational fluid-dynamical simulation of finite element model. The spatial resolution ( mesh size ) was 0.05 mm 2 . The flow was considered to be a constant laminar one, and the pulsatile motion was neglected. The relationship between shear stress and plaque accumulation was then examined. Results: According to the MDCT, atherosclerotic plaque formation was frequently observed in the distal potion at the first and second curvature of right coronary artery, and in the outer side of the bifurcation of the left anterior descending and the circumflex coronary artery. The colorized mapping of shear stress revealed that shear stress tended to be lower at the site of plaque accumulation within coronary artery. Conclusion: This method of 3D representation of shear stress distribution along coronary lumen with a 64-row MDCT might be useful for assessing the role of shear stress in atherosclerotic plaque formation or its progression / regression. |
Databáze: | OpenAIRE |
Externí odkaz: |