A Design Methodology for a DPA-Resistant Circuit with RSL Techniques
Autor: | Daisuke Suzuki, Minoru Saeki, Akashi Satoh, Tsutomu Matsumoto, Koichi Shimizu |
---|---|
Rok vydání: | 2010 |
Předmět: |
Standard cell
Computer science business.industry Applied Mathematics Real-time computing Computer Graphics and Computer-Aided Design Glitch Power analysis CMOS Logic gate Signal Processing Information leakage Hardware_INTEGRATEDCIRCUITS Side channel attack Electrical and Electronic Engineering business Computer hardware Hardware_LOGICDESIGN Data masking |
Zdroj: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. :2497-2508 |
ISSN: | 1745-1337 0916-8508 |
DOI: | 10.1587/transfun.e93.a.2497 |
Popis: | A design methodology of Random Switching Logic (RSL) using CMOS standard cell libraries is proposed to counter power analysis attacks against cryptographic hardware modules. The original RSL proposed in 2004 requires a unique RSL-gate for random data masking and glitch suppression to prevent secret information leakage through power traces. In contrast, our new methodology enables to use general logic gates supported by standard cell libraries. In order to evaluate its practical performance in hardware size and speed as well as resistance against power analysis attacks, an AES circuit with the RSL technique was implemented as a cryptographic LSI using 130-nm and 90-nm CMOS standard cell library. From the results of attack experiments that used a million traces, we confirmed that the RSL-AES circuit has very high DPA and CPA resistance thanks to the contributions of both the masking function and the glitch suppressing function. |
Databáze: | OpenAIRE |
Externí odkaz: |