Counting friezes in type $$D_n$$ D n
Autor: | Bruce Fontaine, Pierre-Guy Plamondon |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Mathematics::Combinatorics Algebra and Number Theory Conjecture 010102 general mathematics 0102 computer and information sciences Type (model theory) 01 natural sciences Cluster algebra Combinatorics Corollary 010201 computation theory & mathematics Discrete Mathematics and Combinatorics 0101 mathematics Computer Science::Data Structures and Algorithms Mathematics::Representation Theory Finite set Mathematics |
Zdroj: | Journal of Algebraic Combinatorics. 44:433-445 |
ISSN: | 1572-9192 0925-9899 |
DOI: | 10.1007/s10801-016-0675-9 |
Popis: | We prove that there is a finite number of friezes in type $$D_n$$Dn, and we provide a formula to count them. As a corollary, we obtain formulas to count the number of friezes in types $$B_n$$Bn, $$C_n$$Cn and $$G_2$$G2. We conjecture finiteness (and precise numbers) for other Dynkin types. |
Databáze: | OpenAIRE |
Externí odkaz: |