On solutions to the heat equation with the initial condition in the Orlicz—Slobodetskii space

Autor: Agnieszka Kałamajska, Miroslav Krbec
Rok vydání: 2014
Předmět:
Zdroj: Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 144:787-807
ISSN: 1473-7124
0308-2105
DOI: 10.1017/s0308210513000218
Popis: We study the boundary-value problem ũt = Δxũ(x,t), ũ(x, 0) = u(x), where x ∈ Ω, t ∈ (0,T), Ω ⊆ ℝn−1 is a bounded Lipschitz boundary domain, u belongs to a certain Orlicz–Slobodetskii space YR,R(Ω). Under certain assumptions on the Orlicz function R, we prove that the solution u belongs to the Orlicz–Sobolev space W1,R(Ω × (0,T)).
Databáze: OpenAIRE