Unital locally matrix algebras and Steinitz numbers
Autor: | Oksana Bezushchak, Bogdana Oliynyk |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Algebra and Number Theory Computer Science::Information Retrieval Applied Mathematics Unital 010102 general mathematics Subalgebra Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) 0102 computer and information sciences 01 natural sciences Finite collection Matrix (mathematics) TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 010201 computation theory & mathematics Matrix algebra ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ComputingMethodologies_DOCUMENTANDTEXTPROCESSING Computer Science::General Literature 0101 mathematics Algebra over a field Unit (ring theory) ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Journal of Algebra and Its Applications. 19:2050180 |
ISSN: | 1793-6829 0219-4988 |
DOI: | 10.1142/s0219498820501807 |
Popis: | An [Formula: see text]-algebra [Formula: see text] with unit [Formula: see text] is said to be a locally matrix algebra if an arbitrary finite collection of elements [Formula: see text] from [Formula: see text] lies in a subalgebra [Formula: see text] with [Formula: see text] of the algebra [Formula: see text], that is isomorphic to a matrix algebra [Formula: see text], [Formula: see text]. To an arbitrary unital locally matrix algebra [Formula: see text], we assign a Steinitz number [Formula: see text] and study a relationship between [Formula: see text] and [Formula: see text]. |
Databáze: | OpenAIRE |
Externí odkaz: |