Unital locally matrix algebras and Steinitz numbers

Autor: Oksana Bezushchak, Bogdana Oliynyk
Rok vydání: 2019
Předmět:
Zdroj: Journal of Algebra and Its Applications. 19:2050180
ISSN: 1793-6829
0219-4988
DOI: 10.1142/s0219498820501807
Popis: An [Formula: see text]-algebra [Formula: see text] with unit [Formula: see text] is said to be a locally matrix algebra if an arbitrary finite collection of elements [Formula: see text] from [Formula: see text] lies in a subalgebra [Formula: see text] with [Formula: see text] of the algebra [Formula: see text], that is isomorphic to a matrix algebra [Formula: see text], [Formula: see text]. To an arbitrary unital locally matrix algebra [Formula: see text], we assign a Steinitz number [Formula: see text] and study a relationship between [Formula: see text] and [Formula: see text].
Databáze: OpenAIRE