Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping

Autor: Hemanth Kolla, Michael A. Heroux, Jacqueline H. Chen, Marc Gamell, Jackson R. Mayo, Manish Parashar, Keita Teranishi
Rok vydání: 2017
Předmět:
Zdroj: SIAM Journal on Scientific Computing. 39:S347-S378
ISSN: 1095-7197
1064-8275
Popis: In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments. In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduct...
Databáze: OpenAIRE