Identificação de Sistemas Dinâmicos Não Lineares Utilizando Modelos Neuro-Fuzzy Lineares Locais com um Algoritmo LOLIMOT-PSO

Autor: Luiz Felipe Pugliese, Fadul Ferrari Rodor, Maria Emília Andrade Borges, Tiago G. de Oliveira
Rok vydání: 2020
Zdroj: Anais do Congresso Brasileiro de Automática 2020.
Popis: Este trabalho propõe o uso do algoritmo de otimização baseado em enxame de partículas para a determinação dos pontos de divisão do subespaço de uma dada dimensão de entrada utilizando algoritmo de treinamento de modelos Neuro-Fuzzy conhecido como LOLIMOT (Local Linear Model Trees). A proposta foi avaliada em dois sistemas dinâmicos não lineares, sendo um modelo NARX (Nonlinear Autoregressive Exogenous) e um sistema de nível. Simulações de Monte Carlo foram efetuadas para analisar o efeito da inicialização aleatória do algoritmo PSO. Os resultados foram comparados com o algoritmo LOLIMOT convencional e em todos os casos foi possível observar uma melhora com relação a função de custo.
Databáze: OpenAIRE