An Experimental Testbed for Multi-Robot Tracking of Manifolds and Coherent Structures in Flows

Autor: Matthew Michini, Philip Yecko, Dennis Larkin, Eric Forgoston, Kenneth Mallory, M. Ani Hsieh
Rok vydání: 2013
Předmět:
Zdroj: Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems.
DOI: 10.1115/dscc2013-3745
Popis: In this paper, we describe the development of an experimental testbed capable of producing controllable ocean-like flows in a laboratory setting. The objective is to develop a testbed to evaluate multi-robot strategies for tracking manifolds and Lagrangian coherent structures (LCS) in the ocean. Recent theoretical results have shown that LCS coincide with minimum energy and minimum time optimal paths for autonomous vehicles in the ocean. Furthermore, knowledge of these structures enables the prediction and estimation of the underlying fluid dynamics. The testbed is a scaled flow tank capable of generating complex and controlled quasi-2D flow fields that exhibit wind-driven double-gyre flows. Particle image velocimetry (PIV) is used to extract the 2D surface velocities and the data is then processed to verify the existence of manifolds and Lagrangian coherent structures in the flow. The velocity data is then used to evaluate our previously proposed multi-robot LCS tracking strategy in simulation.Copyright © 2013 by ASME
Databáze: OpenAIRE